3 research outputs found

    Kaempferol as a flavonoid induces osteoblastic differentiation via estrogen receptor signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flavonoids, a group of compounds mainly derived from vegetables and herbal medicines, chemically resemble estrogen and some have been used as estrogen substitutes. Kaempferol, a flavonol derived from the rhizome of <it>Kaempferia galanga </it>L., is a well-known phytoestrogen possessing osteogenic effects that is also found in a large number of plant foods.</p> <p>The herb <it>K. galanga </it>is a popular traditional aromatic medicinal plant that is widely used as food spice and in medicinal industries. In the present study, both the estrogenic and osteogenic properties of kaempferol are evaluated.</p> <p>Methods</p> <p>Kaempferol was first evaluated for its estrogenic properties, including its effects on estrogen receptors. The osteogenic properties of kaempferol were further determined its induction effects on specific osteogenic enzymes and genes as well as the mineralization process in cultured rat osteoblasts.</p> <p>Results</p> <p>Kaempferol activated the transcriptional activity of pERE-Luc (3.98 ± 0.31 folds at 50 μM) and induced estrogen receptor α (ERα) phosphorylation in cultured rat osteoblasts, and this ER activation was correlated with induction and associated with osteoblast differentiation biomarkers, including alkaline phosphatase activity and transcription of osteoblastic genes, <it>e.g</it>., type I collagen, osteonectin, osteocalcin, Runx2 and osterix. Kaempferol also promoted the mineralization process of osteoblasts (4.02 ± 0.41 folds at 50 μM). ER mediation of the kaempferol-induced effects was confirmed by pretreatment of the osteoblasts with an ER antagonist, ICI 182,780, which fully blocked the induction effect.</p> <p>Conclusion</p> <p>Our results showed that kaempferol stimulates osteogenic differentiation of cultured osteoblasts by acting through the estrogen receptor signaling.</p

    Stimulation of Apolipoprotein A-IV expression in Caco-2/TC7 enterocytes and reduction of triglyceride formation in 3T3-L1 adipocytes by potential anti-obesity Chinese herbal medicines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chinese medicine has been proposed as a novel strategy for the prevention of metabolic disorders such as obesity. The present study tested 17 Chinese medicinal herbs were tested for their potential anti-obesity effects.</p> <p>Methods</p> <p>The herbs were evaluated in terms of their abilities to stimulate the transcription of Apolipoprotein A-IV (ApoA-IV) in cultured Caco-2/TC7 enterocytes. The herbs that showed stimulating effects on ApoA-IV transcription were further evaluated in terms of their abilities to reduce the formation of triglyceride in differentiated 3T3-L1 adipocytes.</p> <p>Results</p> <p>ApoA-IV transcription was stimulated by <it>Rhizoma Alismatis </it>and <it>Radix Angelica Sinensis </it>in a dose- and time-dependent manner in cultured Caco-2/TC7 cells. Moreover, these two herbs reduced the amount of triglyceride in differentiated 3T3-L1 adipocytes.</p> <p>Conclusion</p> <p>The results suggest that <it>Rhizoma Alistmatis </it>and <it>Radix Angelica Sinensis </it>may have potential anti-obesity effects as they stimulate ApoA-IV transcription and reduce triglyceride formation.</p
    corecore